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In this paper we consider the problem of the uniqueness of a restricted
Chebyshev center of an arbitrary bounded subset F of an arbitrary Banach space
B with respect to a subset G ~ B. A key step is an explicit representation of the
extreme points of the unit ball of the space dual to the space of affine mappings
ff--+>" ·f+ b of Finto B.

INTRODUCTION

Let X be a normed linear space, G and F subsets of X. Following [5], a
solution go of the problem

inf sup II g - fll = sup II go - fll = rG(F)
gEG rEF rEF

(I)

is called a restricted Chebyshev center of F with respect to G. The number
rc(F) is the radius of F with respect to G. The set of such solutions is denoted
Ec(F).

Let F be a bounded subset of a Banach space B over a field k (k = R or
k = C) and let II . Ilv be a monotone norm (i.e., 0 :(: 4>U) :(: if;(f) for every
fE Fimplies 114> Ilv :(: II if; Ilv) defined on a subset Vofl C(F, R) which contains
all functions of the form P(A,b)(f) = II .\ .f + b liB where bE B, f EF and

1 See the sentence following Theorem 2.
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A E k. In particular, P(I.-b)(f) = Ilf - b liB' It is easy to verify (see [4]) that,
for every monotone II '1Iv,

deL
/I e(A,b) IIE(V) = II P(A.b) Ilv, (2)

too, is a norm in the vector space A of all affine mappings from F into B of the
form e(A,b)(f) = A '/+ b where b EO B,jeF and A E k.

Following [4], a solution go of the problem

inGf II P(l,-g) II v = II P(I.-Yo) Ii v = rG. v(F) (3)
gE

is called a best II . IIE(v)-simultaneous approximation of F by elements of G.
It is clear that go is a restricted Chebyshev center of F with respect to G if
and only if go is a best II . IIE(v)-simultaneous approximation of elements of F
by elements of G, where II 'llv is a supremum norm.

In [5, Theorem 5.1], Rosema and Smith proved a result concerning the
uniqueness of restricted Chebyshev centers of F with respect to a convex
subset G of C(a, b), when F was a compact subset of C(a, b). The uniqueness
of a best II . IIE(v)-simultaneous approximation of F by elements of convex
subsets G of strictly convex Banach spaces B was established in [4, Theo­
rem 4(b)] when F and II . Ilv satisfy condition C.2, that is: For every rpj =
P(A,b), j = 1, 2, 3, with II rpIllv = II rp211v = II rp311v and ex e R, 0 < ex < 1,
su~h' that 0":;: rpif) ,,:;: ex . rpI(f) + (1 - ex) . rp3(f) for all IE F, there
exists I' E F satisfying rpil') = rp2U'). In particular, in the case of II . Ilv
being a supremum norm, the class of bounded subsets FeB satisfying
condition C.2 includes all compact subsets of B (see Example of Strict
Monotonicity in [4, Sect. 5]).

The case of an arbitrary bounded subset F of C(a, b) was left open in [5].
For bounded subsets F satisfying condition C.2 Theorem 4(b) in [4] and
Theorem 5.1 in [5] extend to the case of an arbitrary BanllCh space B, that is
the following take place.

THEOREM 1. Let G be a convex subset of a Banach space B. Assume that
II . ltv is monotone, F is a bounded subset of B and condition C.2 holds. Suppose
that a best approximation ofany element be F by elemf{nts ofG is unique. Then
the best II . IIE(v)-simultaneous approximation ofF by elements of G is unique.

Proof Consider Gr =def. {b E B such that II e(l,-b)IIE(V) = r}. Let r =
rG,V(F). Then it is clear that Gr is convex. Assume bI and b2 e Gr , hI =1= b2

(i.e. the contrary). Let rpiCf) =def. Ilf - b j liB, where b3 = t(bI + b2) E Gr

and j = 1, 2, 3. Then II rpj llv = r, j = 1, 2, 3, and 0 ,,:;: rp3(f) ,,:;: HrpI(f) +
rp2(f» for every f E F. Applying condition C.2 we find an element I' E F
such that II I' - bI liB = III' - b2 11B = III' - b311B' where bI , b2 E G and
I'is an element ofF. The later contradicts our assumptions on G. Hence the
cardinality of Gr is ,,:;: 1, as required.
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There are inherent difficulties in moving from the compact case to the
case of an arbitrary bounded set F. Rozema and Smith's work rested upon
the work of Laurent and Tuan [3], which in turn depended upon a result of
Valadier [7] concerning an explicit representation of the subgradient of a
convex functional. This expression was tractable whenever, F was a compact
set. Whenever F was a bounded set, Valadier's result does not yield the easily
applicable representation of the subgradient. Thus, this paper uses different
techniques to extend the results of [4] and [5] on the uniqueness of a restricted
Chebyshev center to the case of bounded sets in arbitrary Banach spaces.

In this paper the following notations or conventions will be used. For any
normed space X, U(X) denotes the closed unit ball. S(X) denotes the boundary
of U(X). The dual space of X is denoted by X*. The element (J represents the
zero element of a generic vector space. The set GO = {4> E X* N(g) = 0 for
every g E G} is the annihilator of G. The extreme points of a convex set K are
denoted by ext K. The cardinality of a set F is denoted by #F. We use the
notation (A, b) for the function e(A.b) •

Consider vector space A in the II . IIE(V)-norm. For every p, E R and v E B*
let (p" v) E A* be given by (p" V)[(A, b)] = p, . A+ v(b) for every (A, b) EO A.
A key step in the proof of the uniqueness of a restricted Chebyshev center
for arbitrary bounded sets F and Banach spaces B is of interest in its own
right. It is:

THEOREM 2. Let F be a bounded subset ofa Banach space Band q . Ilv be a
supremum norm. If(p" v) E ext U(A*), then v E ext U(B*).

Let C(F, B) be the space of bounded continuous functions from a bounded
subset F of a Banach space B into B.

Remark 1. The extreme points of U(C(F, B)*) have a nice representation
due to Singer [6, p. 197]. Since the use of the extreme points of the dual unit
ball is of paramount importance in the representation of solutions of best
approximation from finite-dimensional sets, we will appreciate the value of
Singer's representation. In particular, if @ is an element of ext U(C(F, B)*)
and T E C(F, B), then cP can be associated with a pair (fo , CPo) in F x ext U(B*)
via CP(T) = CPo(Tfo). The difficulties in moving from the compact case to the
case of bounded sets F lie in finding a useful representation for the extreme
points of the dual of C(F, B). Fortunately, we are able to find a representation
of the extreme points of U(A *). The significance of Theorem 2 lies in the fact
that there is no known representation of the extreme points of the dual ball
of C(F, B).

In Section 1 we recall the pertinent facts from [4] about the Banach space A
and prove Theorem 2. Section 2 contains results on the uniqueness of a
restricted Chebyshev center.
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1. THE SPACE A

We will use notation II . II for II . IIE(V) , when II . Ilv is a supremum norm, i.e.
II Til = SUPteF II T(f)llo for every T E C(F, B). If one lets G be any set in B
and considers the solution of infgeG 11(1, B) - (1, g)11 = infgeG SUPteF Ilf- g 110 ,
one sees that a best approximation to e(I.O) from the set G(A) = {e(o.o)1 g E G}
is a restricted Chebyshev center of F with respect to G. Thus one can apply
the theorems of best approximation of a point from a given set to the prob­
lems of restricted Chebyshev centers. By an abuse of notation we will
continue to use G instead of G(A) since the meaning is evident.

Proof of Theorem 2. Recall [4, Lemma 2.1] that A is a complete topologi­
cal space and that A * is identified with R E8 B* by the formula (fL, v)[(A., b)] =

fL . ,\ + v(b) whenever Fis a bounded subset of B with #F > I. To distinguish
sets V(A) and V(A *) for different sets F we use the following notation
VF(A) = {('\, b) E AIII('\, b)11 ~ I}

and

Consider F I C F2 , F I and F2 bounded subsets of B. It is easy to see that
VI' (A):) VI' (A) and VI' (A*) C VI' (A*). Moreover,

1 2 1 2

VFJA) = n VF(A) and VFo(A*) = U VF(A*). (4)
F~Fo F~Fo

#1'<00 #1'<00

Therefore

ext V Fo(A *) C U ext V F(A *).
Fe 1'"

#'<00

(5)

Assume now that FC B, #F < 00. Consider the natural imbedding JI:
A ---+ C(F, B), mappings JI*: C(F, B)* ---+ A* and JI*: V(C(F, B)*) ---+

UF(A *) (the latter mapping is surjective by Hahn-Banach theorem). Then
JI*(ext V(C(F, B)*»:) ext ViA*). But for a finite set FC B, it is easy to see
that C(F, B)* = C(F, B*), where for T E C(F, B*) and IP E C(F, B) we let
T(IP) =def. LieF T(f)[IP{f)]. Then ext V(C(F, B)*) = ext V(C(F, B» =
F x ext V(B*). Therefore for every (fL, v) E ext VF(A*), there exists an
element (f, r/J) = T E ext V(C(F, B*)) such that for all ('\, b) E A we have
fL''\ + v(b) = r/J(,\ 'f+ b) =,\ . r/J(f) + r/J(b). Then fL = r/J(f) and v =
r/J E ext V(B*), as required (in the case of a finite set F). For the general case
it is sufficient to use (2). Since if(fL, v) E ext VI' (A*), then (fL' v) E ext VF(A*)o
for some F fL Fo with #F < 00 and then v E ext V(B*), as required. This
completes the proof of the Theorem.
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Following [I], an n dimensional subspace M of X is called an interpolating
subspace if for each set of n linearly independent functionals xt ,... , x~ in
ext U(X*) and each set of scalars C1 , ... , Cn there is a unique element y E M
such that x[( y) = Ci for i = I, ... , n. In this paper we use freely the following
several equivalent definitions of interpolating subspaces from [I, Theo­
rem 2.1]:

M = span(x1 , ... , x n) is an interpolating subspace if and only if for each
set {xi ,... , x~} C ext U(X*) oflinearly independent functionals det[x[(xj)] =1= 0
holds, or equivalently if y E M and xt( y) = 0 for i = 1,... , n then y = O.

We now recover a result known essentially to Golomb [2] when F is a
compact subset of C(a, b).

THEOREM 3. Let B be a Banach space and F a bounded subset ofB. Assume
that G is an interpolating subspace of B of dimension n, disjoint with EG(F).
Then Ee(F) is a singleton.

Proof First of all Ee(F) is nonvoid since the dimension of G is finite
(see [4, Theorem 3]). Let 0 = span{(1, 8); G} C A. Then dimkO = n + I =
dimk(O)* and both mappings p: A * -+ 0* and its restriction p: U(A *) -+

U(O*) are surjective by the Hanh-Banach theorem. Take y E 0* such that
y«O, g)) = 0 for all g E G and y«(1, 8)) = reeF). It is easy to see that II y llc* =
I and y«(1, 8) - (0, g*)) = reeF) for all g* E Ee(F).

Let $"(0*) = {y E U(O*) such that y«(1, 8) - (0, g*)) = reeF) for all
g* E Ec<F)} and §"(A *) = p-1($"(G*)) ~ U(A *). It is easy to see that $"(0*)
is a face in U(C*), that is t(y' + y") E §"(C*) and yr, y" E U(C*) implies
that y' and y" E §"(C*). Therefore §"(A *) =def. p-1(§"(C*)) ~ U(A *) is a
face in U(A *). Thus ext §"(A *) ~ ext U(A *) and

ext §"(C*) ~ p(ext $"(A *)) ~ p(ext U(A *)). (6)

Since $"(G*) =1= U(O*), dimk§"(C*) < dimkU(C*) = n + lone may
choose a collection of m (m ~ n + I) linearly independent vectors Yj E

ext $"(0*), 1 ~j ~ m, such that y = 2::;:1 (X,j . Yj, (X,j ~ 0 and 2::;:1 (X,j = 1.
By (6), there is a collection of Tj = (fLj, Vj) E ext U(A*) (then Vj E ext U(B*)
by Theorem 2), such that p(Tj) = Yj . Let (y, v) = 2::;:1 (X,;(fLj , Vj). Then

m

o = y«O, g)) = v(g) = L (X,j . v;(g) for all g E G, (7)
j~1

rC<F) = y;«I, 8) - (0, g*)) = fLj - Vj(g*) for all g* E Ee(F). (8)
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Now, v = L:;:I!Xj . Vj =1= e, since otherwise rG(F) = (p., B)[(1, -b)] =

p. :(; 11(p., 8)IIA* . !1(1, -b)11 :(; 11(1, -b)11 for all bE Band rG(F) = 11(1, -g*)11
for a g* E EG(F), which contradicts rG(F) > raCF).

We claim that number q (q :(; m) oflinearly independent Vj is equal n + 1.
Otherwise we specify the first k that are linearly independent and write the
remaining m - k as linear combinations of the first k. Thus L:;:l !Xj . Vj =

L:7=1 ~j . Vi =1= B, with L::~l ~j . Vi E GO. Expand the set of Vj, I :(; j :(; k, by
including new n - k elements v; , k + I :(;j :(; n, from ext U(B*) such that
the expanded set consists of linearly independent vectors. Set

k n n

T = L ~j . Vj + L o· v; = L f3j . v; =1= B.
j~l j~k+l j~l

Clearly TE GO. If G = span{xj: j = 1,... , n} then L:;'~l f3j . v;(x i ) = 0 for all
i = 1,... , n. Since G is an interpolating subspace ofB, we have det{v;(xi)} =1= 0
and all f3j = 0, which contradicts L:;~l f3j . v; = v =1= 8. Thus q = m = n + 1.

Now we may prove, using (8), that EG(F) is a singleton, since otherwise
V;(gl - g2) = 0 for all j = I, ... , n + 1 and some gl , g2 E EG(F), gl =1= g2 ,
which contradicts the fact that G is an interpolating subspace of B. This
completes the proof of Theorem 3.

Let Xl ,... , X n be linearly independent elements of B and set

(9)

where, to avoid trivialities,

(i) aj may be +00 but not - 00,

(ii) bi may be - 00 but not + 00,

(iii) aj:(; hj .

SetIl = {j: aj = bj}, 12 = {j: aj =1= bj , and not both ± oo}, and I a = {I,... , n}\
{II U I2}.

The following result generalizes [5, Theorem 5.1] and [4, Theorem 4(b),
the case of II . [Iv = II . Iisup] to the case of bounded subsets of an arbitrary
Banach space B, and answers a question posed by the authors of [5]. We
assume k = R.

THEOREM 4. Let B be a Banach space and F a bounded subset of B. Let
G be defined as in (9) and be disjoint with EB(F). Suppose that for every J c: 12 ,

span{Xj: j E J u Ia} is an interpolating subspace ofB. Then EG(F) is a singleton.
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Remark 2. In the case of a bounded set F satisfying condition C.2 (in
particular for every compact set F) Theorems 3 and 4 are particular cases of
Theorem 1.

Proof of Theorem 4. As in Theorem 3, EG(F) is nonvoid. We set C =def.

span{(1, B); G} ~ A, and so dimRC = n + I. We want first to find ayE C*
such that

y«O, g» ~ y«O, g*» for all g E G and g* E EG(F),

II y IIC'* = 1 and y«(1, -g*» = -rG(F) for all g* E EG(F).
(10)

Let S = span{-gl + EG(F)}, where gl E EG(F), and S =def. span{(1, -gl);
SeA)} ~ C. The convexity of II '11 implies that infgEg +Si1(1, -g)II = 11(1, -g*)11 =_ 1

rG(F) for all g*EEG(F). Take yES* defined by H(1, -gl» = -rG(F) and
y«O, g» = 0 for all g ES. Then it is easy to verify that II y Ils* = I. Note that
H(1, -g» = -rG(F) for all g E EG(F). Using the Hanh-Banach theorem
we may find an extension y EC* of YES* such that II y IIC'* = I. Then
I y«(1, -g» I ~ 11(1, -g)11 = rG(F) = -y«(1, -g*» for all g E G and g* E
EG(F), which implies (10).

Let jO(C*) = {y E U(G*) such that y«(1, e) - (0, g*» = -rG(F) for all
g* E EG(F)}. Then y E jO(C*) and jO(C*) is a face of U(C*). Let y =

L;':l [Xj . Yi' where Yi E ext U(C*), [Xj ~ 0 and L;:l [Xj = I. Then
Yi E ext jO(C*) and m = dimRjO(C*) + I ~ dimRU(C*) = n + I (since
jO(C*) =1= U(C*». As in Theorem 3 the mapping p: U(A*) ~ U(G*) is
surjective. Then there are Tj = (/-Lj , Vj) E ext U(A *) such that p(Tj) = Yj ,
where I ~j ~ m and Vj E ext U(B*). Let (/-L, v) = L;':l [Xj . (/-Lj , Vj). It
follows from (10), that

max v(g) = v(g*) for all g* E EG(F).
gEG

(11)

Assume that Theorem 4 is not true. Then there are gl and g2 E EG(F),
gl =1= g2' Let 1= {i such that the coefficients of Xi in gl and in g2 in the
decomposition (9) are different}. Since v supports G, it supports the minimal
face jO of G containing gl and g2 . If #1 = k, then this face has 2" extreme
points.

We claim that V(Xi) = 0 for i ~ /u /3' Using (11) the case of iE/3 is
easy. If for some iE/ V(Xi) =1= 0, we let /+ = {i E/: V(Xi) ~ O} and /- =
{i E I: V(Xi) < O}. Let h1 = LiEI+ bi . Xi + LiEI- ai . Xi and h2 =

LiEJ+ ai . Xi + LiEJ- bi . Xi (h1 and h2E jO). Therefore 0 = v(h1 - h2) =

LiEJ+(bi - ai) . vex;) + LiEJ-(ai - bi) . V(Xi) = LiEJ di . V(Xi) and sign di =
sign V(Xi), whenever V(Xi) =1= O. Thus v(xi) = 0 for all i E I, as we claimed.

Let W = span{xi: iE/ U /3}' By the hypothesis W is an interpolating
subspace of B; also gl - g2 E W.

As in Theorem 3 v = L;':l [Xj . Vj =1= 8, since otherwise, using (10), we
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obtain rG(F) = -(JL, 0)[(1, -b)] = -JL ~ II(JL, O)IIA' '11(1, -b)11 = 11(1, -b)II for
all bE 0, which contradicts our assumption that rG(F) > rB(F). We also
claim that the number k of linearly independent Vi, 1 ~ i ~ m, is greater or
equal q + 1 = dimRW + 1. Otherwise (k < q + 1), specify the first k
linearly independent and write the remaining m - k as linear combination of

k m k R kthe first ,so that V = Lj=l OI.j . Vj = Lj~l /"'j . Vj 01= e and Lj~l ~j . Vj E WO
(by the choice of W). Expand the set of Vj, 1 ~j ,s;; k, by including q - k
new elements v; ,k + 1 ~ j ,s;; q, from ext U(O*) such that the expanded set
consists of linearly independent vectors. Set T = L:~l ~j . Vj + L~~k+l 0 . v; =
L;=l~j . v; 01= e. Then T E Woo If W = span{el ,... , eQ}, then det{viei)} 01= 0,
since W is an interpolating subspace of O. Therefore all ~j = 0, which
contradicts L;~l ~j • v; 01= e. Hence k ~ q + 1, as it was claimed.

Now, using p((JLj , Vj)) = Yj E %"(0*) we have

-rG(F) = Yi(1, -gi)) = JLj - Vj(gi) for i = I, 2, 3 and j = 1,... , m.

(12)

Therefore for k (k ~ q + 1) linearly independent Vj E ext U(O*) Vj(gl - g2) =
otakes place. Since gl - g2 E W is an interpolating subspace of 0 we obtain
gl = g2 , which contradicts our choice of gl 01= g2 . This completes the proof
of Theorem 4.
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